Hilbert Class Polynomials

Badri Vishal Pandey
Supervisor : Prof Ken Ono

November 2019

1 Abstract

In my project I explored through first five sections of the paper Traces of Singular Moduli by Don Zagier. And as an application, we obtained a procedure to find Hilbert class polynomials without explicitly finding the roots.

2 Introduction

The values assumed by the modular invariant $j(\tau)$ at quadratic irrationality are called Singular Moduli. It turns out that these values are algebraic numbers. Then natural question that arises is: what is its minimal polynomial?. Instead of looking for these values, we can obtain results on their traces and a number of generalizations which can help us find these polynomials.

3 Preliminary

3.1 Positive Definite Binary Quadratic Forms

A binary quadratic form $q(x, y)=a x^{2}+b x y+c y^{2}$, denoted by $[a, b, c]$ is called positive definite if it's discriminant $d=b^{2}-4 a c$ is negative and $a>0$. A discriminant is called fundamental if all the binary quadratic forms corresponding to it are primitive i.e. if $\operatorname{gcd}(a, b, c)=1$ for all such $[a, b, c]$.

Lemma. Let d be a given integer. d is a discriminant if and only if $d \equiv 0,1(\bmod 4)$

3.2 Action of $\mathrm{PSL}_{2} \mathbb{Z}$ on Binary quadratic forms

Let $q(x, y)=a x^{2}+b x y+c y^{2}$ be a binary quadratic form. $\mathrm{PSL}_{2} \mathbb{Z}$ acts naturally on $q(x, y)$ by sending $q(x, y) \longrightarrow$ $q\left(M(x, y)^{t}\right)$ for all matrices $M \in \mathrm{PSL}_{2} \mathbb{Z}$. If we look q as matrix then q correspond to matrix $Q=\left[\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right]$ in the sense that

$$
q(x, y)=(x, y) Q(x, y)^{t}
$$

with discriminant $d=-4 \operatorname{det}(\mathrm{Q})$ Then the action by M corresponds to

$$
(x, y) Q(x, y)^{t} \longrightarrow(x, y) M^{t} Q M(x, y)^{t}
$$

and $\operatorname{det}\left(M^{t} Q M\right)=\operatorname{det}(Q)$ so this action preserves discriminant. So we get that this action produces infinitely many binary quadratic forms with discriminant d. Lets denote set of all binary quadratic forms with discriminant d by Q_{d}. As the action forms an equivalence relation, it divides Q_{d} in different equivalence classes. Gauss proved that the number of equivalence classes is finite.

Definition Let $q \equiv[a, b, c]$ be a binary quadratic form whose discriminant d is not a perfect square. We call q reduced if

$$
-|a| \leq b \leq|a|<|c| \text { or } 0 \leq b \leq|a|=|c|
$$

It turns out that if your form is positive definite, each binary quadratic form corresponds to a unique reduced form. That is to say that each equivalence class has a unique reduced form in it.
Definition The number of equivalence classes of binary quadratic forms of discriminant d is called the class number of d, denoted by $h(d)$.

4 Hilbert Class Polynomials

Let $d>0$ be a number such that $d \equiv 0,3(\bmod 4)$ then $-d$ is a discriminant. Let's also assume that $-d$ is fundamental discriminant so that all corresponding binary quadratic forms are primitive. And for simplicity, let Q_{d} be the set of all positive definite binary quadratic form (PDBQF) of discriminant - d. It turns out that in this case, each reduced form have a unique root in fundamental domain of $\operatorname{PSL}_{2}(\mathbb{Z})$ when you put $y=1$ (or more like a form is reduced if and only if it has a root in fundamental domain). So corresponding to $-d$, there are only finitely many points in fundamental domain. Then we define Hilbert Class polynomial of discriminant $-d$ as

$$
H_{d}(X)=\prod_{Q \in Q_{d} / \Gamma}\left(X-j\left(\alpha_{Q}\right)\right)
$$

where α_{Q} is the unique root corresponding to equivalence class of Q in fundamental domain and $j(\tau)$ is modular invariant $j(\tau)$. It turns out that these polynomials are in $\mathbb{Z}[X]$ and are irreducible. More is known, that the splitting field K_{d} of this polynomial is maximal unramified galois extention over $\mathbb{Q}[\sqrt{-d}]$ and this field extension is called Hilbert Class Field. And more interesting fact is that corresponding Galois group is isomorphic to Ideal Class group of $\mathbb{Q}[\sqrt{-d}]$ i.e $\operatorname{Gal}\left(\mathrm{K}_{\mathrm{d}} / \mathbb{Q}[\sqrt{-\mathrm{d}}]\right) \cong \mathrm{CL}(\mathbb{Q}[\sqrt{-\mathrm{d}}])$.
A more subtle question is how to calculate these polynomials? One way is(which was used as recently as mid '90s) : find all reduced quadratic forms of discriminant $-d$, find roots in upper half plane of each of them and then calculate j-value at that point which seems quite tedious and not satisfactory because even these $j-v a l u e s$ are not guaranteed to be integers(and people used to do approximations). Specially because there are $h(d)$ such calculations we have to do. And it's known that there are just $9 d^{\prime} s(3,4,7,8,11,19,43,67,163)$ such that $h(d)=1$.
There is a more elegant way of calculating these polynomials just with the information of d and class number $h(d)$, which uses weakly holomorphic modular forms of weight $3 / 2$ and/or $1 / 2$.

5 Special weakly holomorphic modular forms of weight $1 / 2$ and $3 / 2$ and their relations

First we would like a formula for the trace of the roots of $H_{d}(X)$. For convenience we need to make two small changes. First, replace j - invariant by the normalized Hauptmodul for $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$

$$
J(\tau)=j(\tau)-744=q^{-1}+196884 q+21493760 q^{2}+\cdots \quad\left(\tau \in \mathfrak{H}, q=e^{2 \pi i \tau}\right)
$$

Secondly, we weight the number $J\left(\alpha_{Q}\right)$ by the factor $1 / \omega_{Q}$, where $\omega_{Q}=\left|\Gamma_{Q}\right|(=2$ or 3 if Q is Γ - equivalent to $[1,0,1]$ or $[1,1,1]$ respectively, and 1 otherwise). Now We define the Hurwitz-Kronecker class numbers $H(d)$ and the modular trace function $\mathbf{t}(d)$ by

$$
H(d):=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{1}{w_{Q}}, \quad \mathrm{t}(d):=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{1}{w_{Q}} J\left(\alpha_{Q}\right) \quad(d>0, \quad d \equiv 0 \text { or } 3 \quad(\bmod 4))
$$

for example: we have
(1) $h(3)=1, Q=[1,1,1], \alpha=\exp (2 \pi i / 3)$, so $j(\alpha)=0$ and $H(3)=1 / 3$ and $\mathrm{t}(3)=\frac{0-744}{3}=-248$
(2) $h(3)=1, Q=[1,0,1], \alpha=i$, so $j(\alpha)=1728$ and $H(3)=1 / 2$ and $\mathrm{t}(4)=\frac{1728-744}{3}=492$

For some small values, we have

d	3	4	7	8	11	12	15	16	19
$H(d)$	$1 / 3$	$1 / 2$	1	1	1	$4 / 3$	2	$3 / 2$	2
$\mathbf{t}(d)$	-248	492	-4119	7256	-33512	53008	-192513	287244	-885480
d	20	23	24	27	28	31	32		
$H(d)$	2	3	2	$4 / 3$	2	3			
$\mathbf{t}(d)$	1262512	-3493982	4833456	-12288992	16576512	-39493539	52255768		

Now we look at a weight $3 / 2$ weakly holomorphic modular form

$$
\begin{aligned}
g(\tau):= & \theta_{1}(\tau) \frac{E_{4}(4 \tau)}{\eta(4 \tau)^{6}} \\
= & \frac{1}{q}-2+248 q^{3}-492 q^{4}+4119 q^{7}-7256 q^{8}+33512 q^{11}-53008 q^{12}+192513 q^{15} \\
& -287244 q^{16}+885480 q^{19}-1262512 q^{20}+3493982 q^{23}-4833456 q^{24} \\
& +12288992 q^{27}-16576512 q^{28}+39493539 q^{31}-52255768 q^{32}+\cdots
\end{aligned}
$$

where $\theta_{1}(\tau)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}$ and E_{4} and η are as usual.
We notice that first few coefficients of this q-expansion are same as the traces of corresponding discriminants up-to sign. It turns out that this is not a coincidence. We have
Theorem Write the Fourier expansion of $g(\tau)$ as $g(\tau)=\sum_{d \geq-1} B(d) q^{d}$. Then

$$
\mathbf{t}(d)=-B(d) \quad(\forall d>0)
$$

The idea of the proof is to look at: (1) $(g \theta) \mid U_{4}$ which is a holomorphic modular form of weight 2 hence should be identically 0 . and (2) $[g, \theta] \mid U_{4}$, where $[g, \theta]=g^{\prime}(\tau) \theta(\tau)-3 g(\tau) \theta^{\prime}(\tau)$ which is a holomorphic modular form of weight 4 on $P S L_{2}(\mathbb{Z})$ and hence is a multiple of $E_{4}(\tau)$. From these two observations, we get

$$
\sum_{r \in \mathbb{Z}} B\left(4 n-r^{2}\right)=0, \quad \sum_{r>0} r^{2} B\left(4 n-r^{2}\right)=240 \sigma_{3}(n) \quad(\forall n \geq 0)
$$

where $\sigma_{3}(0)=1 / 240$ and $\sigma_{3}(n)$ is as usual. From where we get recursions,

$$
B(4 n-1)=240 \sigma_{3}(n)-\sum_{2 \leq r \leq \sqrt{4 n+1}} r^{2} B\left(4 n-r^{2}\right), \quad B(4 n)=-2 \sum_{1 \leq r \leq \sqrt{4 n+1}} B\left(4 n-r^{2}\right)
$$

and we can get all the values by just $B(-1)=240 \sigma_{3}(0)=1$
It turns out that the same identities are true for $\mathrm{t}(d)$. First identity uses the fact that

$$
\Phi_{n}(X, X)=\text { const. } \times \prod_{|r|<2 \sqrt{n}} \mathcal{H}_{4 n-r^{2}}(X)
$$

where

$$
\Phi_{n}(X, j(\tau))=\prod_{M \in \Gamma \backslash \mathcal{M}_{n}}(X-j(M \circ \tau)) \quad(\tau \in \mathfrak{H})
$$

where \mathcal{M}_{n} denotes the set of 2×2 matrices with determinant n in $P G L_{2}(\mathbb{Z})$.
And we equate q - expansion of

$$
\Phi_{n}(j(\tau), j(\tau))=\text { const. } \times \prod_{|r|<2 \sqrt{n}} \mathcal{H}_{4 n-r^{2}}(j(\tau))
$$

Second identity uses something which can be said to be analogous to taking log derivative of the above relation. Now we got a nice formula for traces. But to get the whole polynomial, we need some more information.
The space of weakly holomorphic modular forms on half integer weights $(k+1 / 2)$ is infinite dimensional for every k. In perticular, for every $d>0$ with $d \equiv 0,3(\bmod 4)$ there is a unique modular form $f_{d} \in M_{1 / 2}^{1}$ having a q-expansion of the form

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D}
$$

and the functions $f_{0}, f_{3}, f_{4}, f_{7}, \ldots$ form a basis of $M_{1 / 2}^{!}$. These $f_{i}^{\prime} s$ are unique which is clear because $\operatorname{dim}\left(M_{1 / 2}=0\right.$. There is a procedure to calculate them. Namely, $f_{0}(\tau)=\theta(\tau)$ and a non-trivial linear combination of f_{3} and f_{0} can be obtained as $\left[\theta(\tau), E_{10}(4 \tau)\right] / \Delta(4 \tau)$, where $\left[\theta(\tau), E_{10}(4 \tau)\right]=\theta(\tau) E_{10}^{\prime}(4 \tau)-5 \theta^{\prime}(\tau) E_{10}(4 \tau)$. Comparing $q-$ coefficients, we get f_{3}. And now for each $d \geq 4$ we obtain $f_{d}(\tau)$ by multiplying $f_{d-4}(\tau)$ by $j(4 \tau)$ to get a plus-form of weight $1 / 2$ with leading coefficient q^{-d} and then diagonalizing it using previous $f_{d^{\prime}} s$. We have Fourier expansions of the first few f_{d} begin as follows:

$$
\begin{aligned}
& f_{0}=1+2 q+2 q^{4}+2 q^{9}+2 q^{16}+\mathrm{O}\left(q^{25}\right) \\
& f_{3}=q^{-3}-248 q+26752 q^{4}-85995 q^{5}+1707264 q^{8}-4096248 q^{9}+\mathrm{O}\left(q^{12}\right) \\
& f_{4}=q^{-4}+492 q+143376 q^{4}+565760 q^{5}+18473000 q^{8}+51180012 q^{9}+\mathrm{O}\left(q^{12}\right) \\
& f_{7}=q^{-7}-4119 q+8288256 q^{4}-52756480 q^{5}+5734772736 q^{8}+\mathrm{O}\left(q^{9}\right)
\end{aligned}
$$

In a similar way we can define a second sequence of unique modular forms of $3 / 2$ integer weight for every integer $D>0$ with $D \equiv 0,1(\bmod 4)$ having q-expansion like

$$
g_{D}(\tau)=q^{-D}+\sum_{d \geq 0} B(D, d) q^{d}
$$

$g_{1}(\tau)$ is just $g(\tau)$ we defined earlier and we can construct g_{4} just like in the case of $f_{i}^{\prime} s$ by obtaining $\left[g_{1}(\tau), E_{10}(\tau)\right] / \Delta(4 \tau)$ as a linear combination of $g_{1}(\tau), g_{4}(\tau)$, and $g_{1}(\tau) j(4 \tau)$. And rest by by multiplying $g_{D-4}(\tau)$ by $j(4 \tau)$ and diagonalizing.

$$
\begin{aligned}
& g_{1}=q^{-1}-2+248 q^{3}-492 q^{4}+4119 q^{7}-7256 q^{8}+33512 q^{11}-53008 q^{12}+\mathrm{O}\left(q^{15}\right) \\
& g_{4}=q^{-4}-2-26752 q^{3}-143376 q^{4}-8288256 q^{7}-26124256 q^{8}+\mathrm{O}\left(q^{11}\right) \\
& g_{5}=q^{-5}+0+85995 q^{3}-565760 q^{4}+52756480 q^{7}-190356480 q^{8}+\mathrm{O}\left(q^{11}\right) \\
& g_{8}=q^{-8}+0-1707264 q^{3}-18473000 q^{4}-5734772736 q^{7}-29071392966 q^{8}+\mathrm{O}\left(q^{11}\right)
\end{aligned}
$$

Theorem (Borcherds). Let $d>0, d \equiv 0$ or $3(\bmod 4)$. Then

$$
\mathcal{H}_{d}(j(\tau))=q^{-H(d)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{A\left(n^{2}, d\right)}
$$

Comparing Borcherds Theorem with the formula for weighted $H_{d}(j(\tau))$, we get
Corollary. $\mathbf{t}(d)=A(1, d)$ for all $d>0$.
And from previous results, we have $\mathbf{t}(d)=-B(1, d)$
So we get a relation

$$
A(1, d)=-B(1, d)
$$

More generaly

$$
A(D, d)=-B(D, d)
$$

Let's define functions J_{m} for every integer $m \geq 0$ as the unique holomorphic function on \mathfrak{H} / Γ with a Fourier expansion beginning $q^{-m}+\mathrm{O}(q)$. For $m=0$ this is the constant function 1 and for $m=1$ it is the function $J(\tau)=j(\tau)-744$. And

$$
\begin{aligned}
& J_{2}(\tau)=q^{-2}+42987520 q+40491909396 q^{2}+8504046600192 q^{3}+\cdots \\
& J_{3}(\tau)=q^{-3}+2592899910 q+12756069900288 q^{2}+9529320689550144 q^{3}+\cdots \\
& J_{4}(\tau)=q^{-4}+80983425024 q+1605963589611520 q^{2}+3497254878743101440 q^{3}+\cdots
\end{aligned}
$$

As being modular forms of weight 0 , we have J_{m} can be written as a polynomial in $j(\tau)$. We get first few J_{m}

$$
\begin{aligned}
& J_{2}(\tau)=j(\tau)^{2}-1488 j(\tau)+159768 \\
& J_{3}(\tau)=j(\tau)^{3}-2232 j(\tau)^{2}+1069956 j(\tau)-36866976 \\
& J_{4}(\tau)=j(\tau)^{4}-2976 j(\tau)^{3}+2533680 j(\tau)^{2}-561444608 j(\tau)+8507424792
\end{aligned}
$$

We define analogous to traces of higher powers,

$$
\mathbf{t}_{m}(d):=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{1}{w_{Q}} J_{m}\left(\alpha_{Q}\right)
$$

Now to get a formula for $t_{m}(d)$ we need to involve Hecke operators. For any integer $m \geq 1$ let $A_{m}(D, d)$ and $B_{m}(D, d)$ denote the coefficient of q^{D} in $\left.f_{d}\right|_{\frac{1}{2}} T(m)$ and the coefficient of q^{d} in $\left.g_{D}\right|_{\frac{3}{2}} T(m)$, respectively. Then we have
Theorem. With the above notations, we have
(i) $\mathcal{H}_{d}(j(\tau))=q^{-H(d)} \exp \left(-\sum_{m=1}^{\infty} \mathrm{t}_{m}(d) \frac{q^{m}}{m}\right) \quad$ for all d
(ii) $\mathrm{t}_{m}(d)=-B_{m}(1, d) \quad$ for all m and d
(iii) $A_{m}(D, d)=-B_{m}(D, d) \quad$ for all m, D and d

Now we have enough tools to tackle our main goal.

6 Calculating Hilbert Class Polynomials

Let

$$
P_{m}(d)=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{1}{w_{Q}} j\left(\alpha_{Q}\right)^{m}
$$

Then we have $p_{0}(d)=H(d), P_{1}(d)=t(d)$ and inductively from the fact that $J_{m}(\tau)$ are polynomials in $j(\tau)$, we can get

$$
P_{m}(d)=t_{m}(d)+\text { linear combination of } P_{0}(d), P_{1}(d), \cdots P_{m}(d)
$$

Now if our Hilbert class polynomial looks like

$$
H_{d}(X)=\sum_{n=0}^{h(d)}(-1)^{h(d)-n} e_{n}(d) X^{n}
$$

Then by Newton-Girard formulae, we have $e_{0}(d)=1, e_{1}(d)=P_{1}(d)=t(d)$ and inductively,

$$
e_{k}(d)=\frac{1}{k} \sum_{i=1}^{k-1}(-1)^{i-1} e_{k-i}(d) P_{i}(d)
$$

7 Some Examples

(1) $d=3, h(3)=1, t_{1}(3)=-248$

$$
H_{3}(X)=X+248
$$

(2) $d=15, h(15)=2$,
$t_{1}(15)=B_{1}(1,15)=-192513$
As $J_{1}(\tau)=j(\tau)-744$,
$P_{1}(15)=t_{1}(15)+h(15) * 744=-191025$
As $J_{2}(\tau)=j(\tau)^{2}-1488 * j(\tau)+159768$
$P_{2}(15)=t_{2}(15)+1488 * P_{1}(15)-159768 * h(15)=-B_{2}(1,15)+1488 * P_{1}(15)-159768 * h(15)=3701760111$
$e_{1}(15)=P_{1}(15)=-191025$
$e_{2}(15)=\frac{1}{2}\left(e_{1}(15) * P_{1}(15)-e_{0}(15) * P_{2}(15)\right)=-121287375$

$$
H_{15}(X)=X^{2}+191025 X-121287375
$$

(3) $d=23, h(23)=3$,
$t_{1}(23)=B_{1}(1,23)=-3493982$
$P_{1}(23)=t_{1}(23)+h(23) * 744=-3491750$
$P_{2}(23)=t_{2}(23)+1488 * P_{1}(23)-159768 * h(23)=-B_{2}(1,23)+1488 * P_{1}(23)-159768 * h(23)=12202620656250$
$P_{3}(23)=t_{3}(23)+2232 * P_{2}(23)-1069956 * P_{1}(23)+36866973 * h(23)=-B_{3}(1,23)+2232 * P_{2}(23)-1069956 *$
$P_{1}(23)+36866973 * h(23)=-42626526032966796875$
$e_{1}(23)=P_{1}(23)=-3491750$
$e_{2}(23)=\frac{1}{2}\left(e_{1}(23) * P_{1}(23)-e_{0}(23) * P_{2}(23)\right)=-5151296875$
$e_{3}(23)=\frac{1}{3}\left(e_{2}(23) P_{1}(23)-e_{1}(23) P_{2}(23)+e_{0}(23) P_{3}(23)\right)=-12771880859375$

$$
H_{23}(X)=x^{3}+3491750 x^{2}-5151296875 x+12771880859375
$$

(4) $H_{71}(X)=x^{7}+313645809715 x^{6}-3091990138604570 x^{5}+98394038810047812049302 x^{4}-823534263439730779968091389 x^{3}+$ $5138800366453976780323726329446 x^{2}-425319473946139603274605151187659 x+737707086760731113357714241006081263$

