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1 Abstract

In my project I explored through first five sections of the paper Traces of Singular Moduli by Don Zagier. And
as an application, we obtained a procedure to find Hilbert class polynomials without explicitly finding the roots.

2 Introduction

The values assumed by the modular invariant j(τ) at quadratic irrationality are called Singular Moduli. It turns
out that these values are algebraic numbers. Then natural question that arises is: what is its minimal polynomial?.
Instead of looking for these values, we can obtain results on their traces and a number of generalizations which can
help us find these polynomials.

3 Preliminary

3.1 Positive Definite Binary Quadratic Forms

A binary quadratic form q(x, y) = ax2 + bxy + cy2, denoted by [a, b, c] is called positive definite if it’s discrimi-
nant d = b2 − 4ac is negative and a > 0. A discriminant is called fundamental if all the binary quadratic forms
corresponding to it are primitive i.e. if gcd(a, b, c) = 1 for all such [a, b, c].

Lemma. Let d be a given integer. d is a discriminant if and only if d ≡ 0, 1(mod4)

3.2 Action of PSL2Z on Binary quadratic forms

Let q(x, y) = ax2 + bxy + cy2 be a binary quadratic form. PSL2Z acts naturally on q(x, y) by sending q(x, y) −→

q(M(x, y)t) for all matrices M ∈ PSL2Z. If we look q as matrix then q correspond to matrix Q =

[
a b/2
b/2 c

]
in

the sense that
q(x, y) = (x, y)Q(x, y)t

with discriminant d = −4det(Q) Then the action by M corresponds to

(x, y)Q(x, y)t −→ (x, y)M tQM(x, y)t

and det(M tQM) = det(Q) so this action preserves discriminant. So we get that this action produces infinitely many
binary quadratic forms with discriminant d. Lets denote set of all binary quadratic forms with discriminant d by
Qd . As the action forms an equivalence relation, it divides Qd in different equivalence classes. Gauss proved that
the number of equivalence classes is finite.

Definition Let q ≡ [a, b, c] be a binary quadratic form whose discriminant d is not a perfect square. We call q
reduced if

−|a| ≤ b ≤ |a| < |c| or 0 ≤ b ≤ |a| = |c|

It turns out that if your form is positive definite, each binary quadratic form corresponds to a unique reduced form.
That is to say that each equivalence class has a unique reduced form in it.
Definition The number of equivalence classes of binary quadratic forms of discriminant d is called the class number
of d, denoted by h(d).
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4 Hilbert Class Polynomials

Let d > 0 be a number such that d ≡ 0, 3(mod4) then −d is a discriminant. Let’s also assume that −d is fundamental
discriminant so that all corresponding binary quadratic forms are primitive. And for simplicity, let Qd be the set of
all positive definite binary quadratic form (PDBQF) of discriminant −d. It turns out that in this case, each reduced
form have a unique root in fundamental domain of PSL2(Z) when you put y = 1(or more like a form is reduced if
and only if it has a root in fundamental domain). So corresponding to −d, there are only finitely many points in
fundamental domain. Then we define Hilbert Class polynomial of discriminant −d as

Hd(X) =
∏

Q∈Qd/Γ

(X − j(αQ))

where αQ is the unique root corresponding to equivalence class of Q in fundamental domain and j(τ) is modular
invariant j(τ). It turns out that these polynomials are in Z[X] and are irreducible. More is known, that the splitting
field Kd of this polynomial is maximal unramified galois extention over Q[

√
−d] and this field extension is called

Hilbert Class Field. And more interesting fact is that corresponding Galois group is isomorphic to Ideal Class
group of Q[

√
−d] i.e Gal(Kd/Q[

√
−d]) ∼= CL(Q[

√
−d]).

A more subtle question is how to calculate these polynomials? One way is(which was used as recently as mid ’90s)
: find all reduced quadratic forms of discriminant −d, find roots in upper half plane of each of them and then
calculate j−value at that point which seems quite tedious and not satisfactory because even these j−values are not
guaranteed to be integers(and people used to do approximations). Specially because there are h(d) such calculations
we have to do. And it’s known that there are just 9 d′s (3, 4, 7, 8, 11, 19, 43, 67, 163) such that h(d) = 1.
There is a more elegant way of calculating these polynomials just with the information of d and class number h(d),
which uses weakly holomorphic modular forms of weight 3/2 and/or 1/2.

5 Special weakly holomorphic modular forms of weight 1/2 and 3/2
and their relations

First we would like a formula for the trace of the roots of Hd(X). For convenience we need to make two small
changes. First, replace j − invariant by the normalized Hauptmodul for Γ = PSL(2,Z)

J(τ) = j(τ)− 744 = q−1 + 196884q + 21493760q2 + · · ·
(
τ ∈ H, q = e2πiτ

)
Secondly, we weight the number J(αQ) by the factor 1/ωQ, where ωQ = |ΓQ|(=2 or 3 if Q is Γ − equivalent to
[1, 0, 1] or [1, 1, 1] respectively, and 1 otherwise). Now We define the Hurwitz-Kronecker class numbers H(d) and the
modular trace function t(d) by

H(d) :=
∑

Q∈Qd/Γ

1

wQ
, t(d) :=

∑
Q∈Qd/Γ

1

wQ
J (αQ) (d > 0, d ≡ 0 or 3 (mod4))

for example: we have

(1)h(3) = 1,Q = [1, 1, 1], α = exp(2πi/3), so j(α) = 0 and H(3) = 1/3 and t(3) =
0− 744

3
= −248

(2) h(3) = 1,Q = [1, 0, 1], α = i, so j(α) = 1728 and H(3) = 1/2 and t(4) =
1728− 744

3
= 492

For some small values, we have
d 3 4 7 8 11 12 15 16 19

H(d) 1/3 1/2 1 1 1 4/3 2 3/2 2
t(d) −248 492 −4119 7256 −33512 53008 −192513 287244 −885480

d 20 23 24 27 28 31 32
H(d) 2 3 2 4/3 2 3
t(d) 1262512 −3493982 4833456 −12288992 16576512 −39493539 52255768

Now we look at a weight 3/2 weakly holomorphic modular form

g(τ) :=θ1(τ)
E4(4τ)

η(4τ)6

=
1

q
− 2 + 248q3 − 492q4 + 4119q7 − 7256q8 + 33512q11 − 53008q12 + 192513q15

− 287244q16 + 885480q19 − 1262512q20 + 3493982q23 − 4833456q24

+ 12288992q27 − 16576512q28 + 39493539q31 − 52255768q32 + · · ·
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where θ1(τ) =
∑∞
n=−∞(−1)nqn

2

and E4 and η are as usual.
We notice that first few coefficients of this q−expansion are same as the traces of corresponding discriminants up-to
sign. It turns out that this is not a coincidence. We have
Theorem Write the Fourier expansion of g(τ) as g(τ) =

∑
d≥−1B(d)qd. Then

t(d) = −B(d) (∀d > 0)

The idea of the proof is to look at: (1) (gθ)|U4 which is a holomorphic modular form of weight 2 hence should be
identically 0. and (2) [g, θ]|U4, where [g, θ] = g′(τ)θ(τ)− 3g(τ)θ′(τ) which is a holomorphic modular form of weight
4 on PSL2(Z) and hence is a multiple of E4(τ). From these two observations, we get∑

r∈Z
B
(
4n− r2

)
= 0,

∑
r>0

r2B
(
4n− r2

)
= 240σ3(n) (∀n ≥ 0)

where σ3(0) = 1/240 and σ3(n) is as usual. From where we get recursions,

B(4n− 1) = 240σ3(n)−
∑

2≤r≤
√

4n+1

r2B
(
4n− r2

)
, B(4n) = −2

∑
1≤r≤

√
4n+1

B
(
4n− r2

)
and we can get all the values by just B(−1) = 240σ3(0) = 1
It turns out that the same identities are true for t(d). First identity uses the fact that

Φn(X,X) = const.×
∏

|r|<2
√
n

H4n−r2(X)

where
Φn(X, j(τ)) =

∏
M∈Γ\Mn

(X − j(M ◦ τ)) (τ ∈ H)

where Mn denotes the set of 2× 2 matrices with determinant n in PGL2(Z).
And we equate q − expansion of

Φn(j(τ), j(τ)) = const.×
∏

|r|<2
√
n

H4n−r2(j(τ))

Second identity uses something which can be said to be analogous to taking log derivative of the above relation.
Now we got a nice formula for traces. But to get the whole polynomial, we need some more information.
The space of weakly holomorphic modular forms on half integer weights (k+ 1/2) is infinite dimensional for every k.
In perticular, for every d > 0 with d ≡ 0, 3( mod 4) there is a unique modular form fd ∈M !

1/2 having a q-expansion
of the form

fd(τ) = q−d +
∑
D>0

A(D, d)qD

and the functions f0, f3, f4, f7, . . . form a basis of M !
1/2. These f ′is are unique which is clear because dim(M1/2 = 0.

There is a procedure to calculate them. Namely, f0(τ) = θ(τ) and a non-trivial linear combination of f3 and f0 can be
obtained as [θ(τ), E10(4τ)] /∆(4τ), where [θ(τ), E10(4τ)] = θ(τ)E′10(4τ)−5θ′(τ)E10(4τ). Comparing q−coefficients,
we get f3. And now for each d ≥ 4 we obtain fd(τ) by multiplying fd−4(τ) by j(4τ) to get a plus-form of weight 1/2
with leading coefficient q−d and then diagonalizing it using previous fd′s.We have Fourier expansions of the first few
fd begin as follows:

f0 =1 + 2q + 2q4 + 2q9 + 2q16 + O
(
q25
)

f3 =q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 + O
(
q12
)

f4 =q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 + O
(
q12
)

f7 =q−7 − 4119q + 8288256q4 − 52756480q5 + 5734772736q8 + O
(
q9
)

In a similar way we can define a second sequence of unique modular forms of 3/2 integer weight for every integer
D > 0 with D ≡ 0, 1( mod 4) having q − expansion like

gD(τ) = q−D +
∑
d≥0

B(D, d)qd
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g1(τ) is just g(τ) we defined earlier and we can construct g4 just like in the case of f ′is by obtaining [g1(τ), E10(τ)] /∆(4τ)
as a linear combination of g1(τ), g4(τ), and g1(τ)j(4τ). And rest by by multiplying gD−4(τ) by j(4τ) and diagonal-
izing.

g1 =q−1 − 2 + 248q3 − 492q4 + 4119q7 − 7256q8 + 33512q11 − 53008q12 + O
(
q15
)

g4 =q−4 − 2− 26752q3 − 143376q4 − 8288256q7 − 26124256q8 + O
(
q11
)

g5 =q−5 + 0 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 + O
(
q11
)

g8 =q−8 + 0− 1707264q3 − 18473000q4 − 5734772736q7 − 29071392966q8 + O
(
q11
)

Theorem (Borcherds) . Let d > 0, d ≡ 0 or 3 (mod 4). Then

Hd(j(τ)) = q−H(d)
∞∏
n=1

(1− qn)
A(n2,d)

Comparing Borcherds Theorem with the formula for weighted Hd(j(τ)), we get
Corollary. t(d) = A(1, d) for all d > 0.
And from previous results, we have t(d) = −B(1, d)
So we get a relation

A(1, d) = −B(1, d)

More generaly
A(D, d) = −B(D, d)

Let’s define functions Jm for every integer m ≥ 0 as the unique holomorphic function on H/Γ with a Fourier expansion
beginning q−m + O(q). For m = 0 this is the constant function 1 and for m = 1 it is the function J(τ) = j(τ)− 744.
And

J2(τ) = q−2 + 42987520q + 40491909396q2 + 8504046600192q3 + · · ·
J3(τ) = q−3 + 2592899910q + 12756069900288q2 + 9529320689550144q3 + · · ·
J4(τ) = q−4 + 80983425024q + 1605963589611520q2 + 3497254878743101440q3 + · · ·

As being modular forms of weight 0, we have Jm can be written as a polynomial in j(τ). We get first few Jm

J2(τ) =j(τ)2 − 1488j(τ) + 159768

J3(τ) =j(τ)3 − 2232j(τ)2 + 1069956j(τ)− 36866976

J4(τ) =j(τ)4 − 2976j(τ)3 + 2533680j(τ)2 − 561444608j(τ) + 8507424792

We define analogous to traces of higher powers,

tm(d) :=
∑

Q∈Qd/Γ

1

wQ
Jm (αQ)

Now to get a formula for tm(d) we need to involve Hecke operators. For any integer m ≥ 1 let Am(D, d) and Bm(D, d)
denote the coefficient of qD in fd| 1

2
T (m) and the coefficient of qd in gD| 3

2
T (m), respectively. Then we have

Theorem. With the above notations, we have

(i) Hd(j(τ)) = q−H(d) exp
(
−
∑∞
m=1 tm(d) q

m

m

)
for all d

(ii) tm(d) = −Bm(1, d) for all m and d
(iii) Am(D, d) = −Bm(D, d) for all m,D and d

Now we have enough tools to tackle our main goal.

6 Calculating Hilbert Class Polynomials

Let

Pm(d) =
∑

Q∈Qd/Γ

1

wQ
j (αQ)

m

Then we have p0(d) = H(d) ,P1(d) = t(d) and inductively from the fact that Jm(τ) are polynomials in j(τ), we can
get

Pm(d) = tm(d) + linear combination of P0(d), P1(d), · · ·Pm(d)
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Now if our Hilbert class polynomial looks like

Hd(X) =

h(d)∑
n=0

(−1)h(d)−nen(d)Xn

Then by Newton–Girard formulae, we have e0(d) = 1, e1(d) = P1(d) = t(d) and inductively,

ek(d) =
1

k

k−1∑
i=1

(−1)i−1ek−i(d)Pi(d)

7 Some Examples

(1) d = 3, h(3) = 1, t1(3) = −248
H3(X) = X + 248

(2) d = 15, h(15) = 2,
t1(15) = B1(1, 15) = −192513
As J1(τ) = j(τ)− 744,
P1(15) = t1(15) + h(15) ∗ 744 = −191025
As J2(τ) = j(τ)2 − 1488 ∗ j(τ) + 159768
P2(15) = t2(15) + 1488 ∗ P1(15)− 159768 ∗ h(15) = −B2(1, 15) + 1488 ∗ P1(15)− 159768 ∗ h(15) = 3701760111
e1(15) = P1(15) = −191025

e2(15) =
1

2
(e1(15) ∗ P1(15)− e0(15) ∗ P2(15)) = −121287375

H15(X) = X2 + 191025X − 121287375

(3) d = 23, h(23) = 3,
t1(23) = B1(1, 23) = −3493982
P1(23) = t1(23) + h(23) ∗ 744 = −3491750
P2(23) = t2(23) + 1488 ∗ P1(23)− 159768 ∗ h(23) = −B2(1, 23) + 1488 ∗ P1(23)− 159768 ∗ h(23) = 12202620656250
P3(23) = t3(23) + 2232 ∗ P2(23) − 1069956 ∗ P1(23) + 36866973 ∗ h(23) = −B3(1, 23) + 2232 ∗ P2(23) − 1069956 ∗
P1(23) + 36866973 ∗ h(23) = −42626526032966796875
e1(23) = P1(23) = −3491750

e2(23) =
1

2
(e1(23) ∗ P1(23)− e0(23) ∗ P2(23)) = −5151296875

e3(23) =
1

3
(e2(23)P1(23)− e1(23)P2(23) + e0(23)P3(23)) = −12771880859375

H23(X) = x3 + 3491750x2 − 5151296875x+ 12771880859375

(4)H71(X) = x7+313645809715x6−3091990138604570x5+98394038810047812049302x4−823534263439730779968091389x3+
5138800366453976780323726329446x2−425319473946139603274605151187659x+737707086760731113357714241006081263
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