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The big picture

The goal of this talk is to prove the First Fundamental Theorem of Complex Multiplication: that is, we will find
explicit generators for the maximal unramified abelian extension (Hilbert class field) of an imaginary quadratic
field.

To begin, we review the basic properties of elliptic curves and functions over C, giving an explicit param-
eterization of points on an EC using the Weierstrass ℘–function. Then we introduce the notion of complex
multiplication, giving a correspondence between the ideal class group of an order in an imaginary quadratic
field and elliptic curves with prescribed symmetries.

In the second section of this talk, we will first discuss the j-invariant, which classifies elliptic curves up to
isomorphism, or equivalently, lattices up to homothety. We will then promote this construction to a modular
function, and along with the modular equation, use these tools to prove that the j-invariant is an algebraic
integer of degree bounded by the class number.

The goal of the final section 3 is to prove the first fundamental theorem of CM. In this chapter we start
with introducing basic facts from algebraic number theory required to prove the main theorem. Then, using
Chebotarev’s density theorem, we prove theorem 3.1.5 which tells us when a Galois field extension L/Q contains
another field extension K/Q in terms of primes in K with relative degree 1 over Q that split completely in L.
This theorem is essential in providing a necessary and sufficient condition when a field extension K̃/K is
maximal unramified abelian extension (Hilbert class field). Finally, using this condition we show that indeed
K(j(OK))/K is the Hilbert class field for K = Q(

√
−d).
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Chapter 1

Elliptic functions and elliptic curves

In the coming sections, we will see how the geometry of elliptic curves may be used to study abelian extensions
of imaginary quadratic number fields. The goal of this section is to develop the necessary background in elliptic
curves – particularly from the perspective of complex tori and elliptic functions. We will first define elliptic
functions to establish the following correspondence:

Lattices ⇔ Elliptic curves over C.

This correspondence will end up being functorial in a suitable manner, so that lattices with prescribed
endomorphism rings will correspond to elliptic curves with the same endomorphism ring. Elliptic curves with
endomorphism rings larger than Z are said to have Complex Multiplication (CM). In this case, the endomorphism
rings will be orders in imaginary quadratic fields. Remarkably, isomorphism classes of elliptic curves with CM
will further correspond to ideal classes in the respective quadratic order:

Ideal classes in imaginary quadratic order O ⇔ Lattices with CM O ⇔ E/C with CM O.

We begin by recalling the basic properties of elliptic functions and elliptic curves.

1.1 The ℘–function

Definition 1.1.1. A lattice Λ is a subgroup of C generated by two R–linearly independent elements ω1, ω2.

We will often denote a lattice generated by two elements ω1, ω2 by [ω1, ω2]. More generally, we will let
[ω1, . . . , ωn] denote the Z–span of ω1, . . . , ωn in C.

Definition 1.1.2. An elliptic curve E is a compact Riemann surface of the form C/Λ where Λ is a lattice, with
a distinguished point O = [0] corresponding to the equivalence class of 0.

Given a complex number z ∈ C and a lattice Λ, we may sometimes refer to the coset z + Λ as [z].

Definition 1.1.3. A morphism of lattices Λ1 → Λ2 is a complex number α ∈ C× so that αΛ1 ⊆ Λ2. An
isomorphism of lattices is called a homothety.

Observe that Hom(Λ1,Λ2) is a subgroup of C×, and hence Hom(Λ1,Λ1) is a subring of C×.

Definition 1.1.4. A morphism of elliptic curves is a holomorphic basepoint preserving map between the un-
derlying Riemann surfaces.

Similarly to lattices, the hom sets between elliptic curves can be seen as abelian groups: although we view
C/Λ as just an abstract Riemann surface (and have hence forgotten any natural group structure one could induce
on it), specifying the base point [0] allows us to recover the quotient map π : C → C/Λ which is translation
invariant and sending 0 to [0]. In particular, this allows us to endow C/Λ with the structure of an abelian group
– namely with the quotient group structure. The Hom(E1, E2) ends up being an abelian group under pointwise
addition.

From these initial definitions, it is clear to see that a morphism of lattices induces a morphism of elliptic
curves: any map α : Λ → Λ′ induces a map C/Λ → C/Λ′ by x+Λ 7→ αx+Λ′, and such a map is well–defined,
as αΛ ⊆ Λ′. But we want an equivalence of categories between the category of elliptic curves and the category
of lattices. That is, we would like to see that every morphism of elliptic curves arises in this manner. To show
this, we must first define elliptic functions.
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Definition 1.1.5. An elliptic function (for Λ) is a meromorphic function f on C so that f(x+ ω) = f(x) for
all ω ∈ Λ and x ∈ C (equivalently f(x+ ω1) = f(x+ ω2) = f(x).

One may also think of an elliptic function (for Λ) as being a meromorphic function factoring through C/Λ.
With this characterization, it is easy to prove the following theorem:

Theorem 1.1.6. If f is elliptic and entire, then f is constant.

Proof. If f is entire, then f is a holomorphic function f : C → C factoring through C/Λ as follows:

C C

C/Λ

f

f̄

We know that C/Λ is compact, and hence its image under f is compact and hence bounded. Thus, f is
bounded and entire, meaning it is constant.

The last step in proving the equivalence of categories is to show that every morphism between elliptic curves
arises from a morphism of lattices:

Theorem 1.1.7. Let f : C/Λ → C/Λ′ be a morphism of elliptic curves. Then there is α ∈ C so that f(x+Λ) =
αx+ Λ′ for all x ∈ C.

Proof. Fix a morphism of elliptic curves f : C/Λ → C/Λ′. Implicitly, when we talk about “C/Λ”, have endowed
the set C/Λ with the quotient topology, and further endowed it with a the structure of a complex manifold in
such a way that the projection map π : C → C/Λ is locally a biholomorphic map, an in particular a covering
map. By general algebraic topology, a map between spaces induces a map between universal covers, yielding
the following commutative diagram:

C C

C/Λ C/Λ′

f̃

π

f

π

Since holomorphy is a local condition, π is locally biholomorphic, and f is holomorphic, it follows that f̃ is
also holomorphic. Furthermore, since π ◦ f̃ = f ◦ π, it follows that for any ω ∈ Λ, f̃(x + ω) + Λ′ = f̃(x) + Λ′,
or equivalently, f̃(x+ ω)− f̃(x) ∈ Λ′. For any ω ∈ Λ, f̃(x+ ω)− f̃(x) is a continuous map (in x) from C to Λ′

(with the discrete topology), and is hence constant. Taking derivatives, we see that f̃ ′(x+ ω) = f̃ ′(x), so f̃ ′ is
elliptic and entire, and is hence a constant α ∈ C.. Thus, f(x) = f(0) + α · x. But by supposition, f([0]) = [0],
so we may take f(0) = 0, and we are done.

So far, we have made use of constant elliptic functions to great effect, establishing an equivalence of categories
between the category of lattices and the category of elliptic curves over C. However, a number of lingering
questions remain. Firstly, are there any non–constant elliptic functions? Furthermore, we have basically rigged
the definition of elliptic curves to force this equivalence of categories. What do based complex tori have to do
with the cubic curves number theorists may be more familiar with? Both of these questions may be addressed
via the Weierstrass ℘–function.

Definition 1.1.8. The Weierstrass ℘–function is defined as

℘(z; Λ) :=
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
We will omit Λ when there is no ambiguity in doing so.

Theorem 1.1.9. The ℘–function is an elliptic function so that

1. The only poles lie on Λ and are of order 2

2. ℘ is meromorphic and satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ)

Where g2(Λ) and g3(Λ) are the normalized Eisenstein series, i.e. g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ)
where
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Gn(Λ) =
∑

ω∈Λ\{0}

1

ωn

(remark: the Gn’s are the modular forms you are probably familiar with)

3. Let W (x, y) = y2−4x3+g2(Λ)x−g3(Λ). Then the map [℘ : ℘′ : 1] : C/Λ → VCP2(W ) is a bijection (where
here, VCP 2(W ) denotes the zero set of the homogenization of W in CP 2).

Proof. The proof for this theorem comes from [1, Chapter 10].
Part (1) follows directly from the definition.
We will defer the meromorphy in part (2) to [1, Theorem 10.1] The differential equation in (2) is a fairly

direct and formal computation. We will not fully justify all interchanges of sums and other analytic arguments,
and instead differ to [1, Chapter 10] for more thorough proofs.

Note that f(z) := ℘′(z)2 − 4℘(z)3 + g2(Λ)℘(z) + g3(Λ) is elliptic (for Λ), so we just need to show that it is
entire and vanishes somewhere. Note further that as the only poles of ℘ lie on Λ, so too can the only poles of
℘′ and f only lie on Λ. Thus, it suffices to show that f(0) = 0.

First we compute the Laurent expansion of ℘ around 0. Using the geometric series, we get that

1

(z − ω)2
− 1

ω2
=

∞∑
n=1

n+ 1

ωn+2
zn

and hence

℘(z; Λ) =
1

z2
+

∑
ω∈Λ\{0}

∞∑
n=1

n+ 1

ωn+2
zn =

1

z2
+

∞∑
n=1

∑
ω∈Λ\{0}

n+ 1

ωn+2
zn =

1

z2
+

∞∑
n=1

(n+ 1)Gn+2(Λ)z
n

Taking the derivative with respect to z, we get

℘′(z; Λ) =
−2

z3
+

∞∑
n=0

n(n+ 2)Gn+3(Λ)z
n

When n is odd, Gn(Λ) = 0 for all lattices Λ, as for any ω ∈ Λ\{0}, we have −ω ∈ Λ\{0} with ω ̸= −ω, and
hence we may pair off every term in the sum:

Gn(Λ) =
∑

ω∈Λ{0}

1

ωn
=

∑
±ω∈Λ{0}

(
1

ωn
+

1

(−ω)n

)
=

∑
ω∈Λ{0}

1

ωn
− 1

ωn
= 0

This means every other term in the series expansions for ℘ and ℘′ vanish.
If we then compute the first few terms of ℘3, ℘, and ℘′2, we get:

℘(z)3 =
1

z6
+

9G4(Λ)

z2
+ 15G6(Λ) + . . .

℘(z) =
1

z2
+ . . .

℘′(z)2 =
4

z6
− 24G4(Λ)

z2
− 80G6(Λ)

Substituting these expansions into our expression for f , we get that the terms up to order 0 in the Laurent
series for f are:

f(z) =

(
4

z6
− 4 · 1

z6

)
+

(
−24G4(Λ)

z2
− 36G4(Λ)

z2
+ 60

G4(Λ)

z2

)
+ (−80G6(Λ)− 60G4(Λ) + 140G6(Λ)) + . . .

=0 + . . .

Thus, f vanishes at zero, and hence equals 0 everywhere.
For item (3), we have shown that [℘ : ℘′ : 1] maps into VCP 2(W ). We now must show that it is bijective.

We would like to begin by showing that it is injective. First, we need a few lemmas:

Lemma 1.1.10. Let z, w /∈ Λ. Then ℘(z) = ℘(w) ⇔ z ≡ ±wmod Λ.
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Proof. By inspection, ℘ is even, so the reverse implication is trivial.
Conceptually, the forwards direction follows from the following geometric argument:
Let g(z) = ℘(z)− ℘(w). Now consider g as a function on C/Λ. We have exhibited two zeroes for g(z): [w]

and [−w]. Furthermore, we know that ℘(z) has a unique pole on C/Λ of order 2. For a rational function of
a smooth projective curve, the degree of the associated divisor (that is, the sum of the orders of zeros minus
the sum of the orders of poles) is 0, and hence, g has at most two zeros. Thus, g(z) has exactly two zeros: [w]
and [−w], meaning ℘(z) = ℘(w) ⇔ z = ±wmod Λ. We may also give a more elementary proof using complex
analysis.

Suppose ℘(z) = ℘(w). Let Λ = Zω1 + Zω2. For −1 < δ < 0, let Pδ = {sω1 + tω2 : δ ≤ s, t ≤ δ + 1}. Let
Γδ denote its boundary oriented counterclockwise. Note that Pδ/Λ = C/Λ. Furthermore, if [x] /∈ Γ, then x has
a unique representative in the interior of P .

Let g(z) = ℘(z) − ℘(w). The zeros and poles of g form a discrete subset of C, and so we may choose δ so
that no zeros or poles of g lie on Γδ. By the argument principal,

1

2πi

∮
Γ

g′(z)

g(z)
dz = Z − P

where Z and P denote the number of zeros and poles of g in Pδ respectively.

(δω1, δω2) ((δ + 1)ω1, δω2)

(δω1, (δ + 1)ω2) ((δ + 1)ω1, (δ + 1)ω2)

γ1

γ2

γ3

γ4

As ℘ is elliptic for Λ, so is g, and hence g′

g . Thus, by the Λ–translation invariance of g′

g , we have
∫
γ1

g′(z)
g(z) dz =

−
∫
γ3

g′(z)
g(z) dz and

∫
γ2

g′(z)
g(z) dz = −

∫
γ4

g′(z)
g(z) dz. Thus,

∮
Γ

g′(z)
g(z) dz = 0, meaning P = Z.

We know that the poles of g(z) lie on Λ, and each pole is of order 2. Since Pδ ∩Λ consists of a single point,
P = 2, meaning Z = 2.

If w ̸≡ −wmod Λ, then we may exhibit two zeros of g in Pδ: namely, choose a representatives for [w] and
[−w] in Pδ. Thus, again, we conclude that ℘(z) = ℘(w) =⇒ z ≡ ±wmod Λ. In particular, this means g has
all zeroes of order 1, meaning ℘′(w) ̸= 0 if w ̸≡ −wmod Λ.

If w ≡ w′ mod Λ, then as g′ = ℘′ is an odd function, we get ℘′(w) = −℘′(−w), but by Λ–translation
invariance, −℘′(−w) = −℘′(w), so since ℘′ does not have a pole at w, it is forced that ℘′(w) = 0. Thus, g has
a double zero at w, meaning that the only zero of g in Pδ is the representative for the class [w] = [−w] in Pδ.

Thus, we have shown that ℘(z) = ℘(w) =⇒ z ≡ ±wmod Λ, so we are done.

Note that in the end of the proof, we also showed an important restriction on when ℘′ can be zero:

Corollary 1.1.11. If w /∈ Λ, then ℘′(w) = 0 ⇔ 2w ∈ Λ. In particular, ℘′ has three distinct zeros when
considered as a function on C/Λ.

With these intermediate results in place, we are now ready to show that [℘ : ℘′ : 1] is injective. First note
that if [z] ̸= [0], then [℘([z]) : ℘′([z]) : 1] ̸= [0 : 1 : 0] = [℘([0]), ℘′([0]), 1], where this last equality holds since
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℘′ has a pole of order 3 at 0, whereas ℘ only has a pole of order 2 at 0. Thus, the interesting case is when
[z], [w] ̸= [0].

Suppose [z], [w] ̸= [0] with ℘([z]) = ℘([w]) and ℘′([z]) = ℘′([w]). By Lemma 1.1.10, z ≡ ±wmod Λ.
If z ≡ wmod Λ, we are done. Suppose that z ≡ −wmod Λ. Then ℘′(z) = ℘′(−w) by Λ–invariance, and
℘′(−w) = −℘′(w) since ℘′ is odd. But by assumption, ℘′(w) = ℘′(z), so ℘′(z) = −℘′(z), and since [z] ̸= [0],
it follows that ℘′(z) = ℘′(w) = 0. Thus, 2z, 2w ∈ Λ. In particular, z ≡ −zmod Λ, and hence z ≡ −wmod Λ.
Thus, [℘ : ℘′ : 1] is injective.

We now wish to show surjectivity. We have already shown that the point at infinity for VCP 2(W ) lies in
the image of [℘ : ℘′ : 1]. Suppose x, y ∈ C are such that W (x, y) = 0. ℘ is meromorphic and nonconstant, it
is a surjection from C/Λ to CP 1. Thus, there is z0 ∈ C/Λ so that ℘(z0) = x. Now there are two cases: either
y = 0, in which case, it is forced that ℘′(z0) = 0 and we are done, or y ̸= 0. In this latter case, it is possible
that ℘′(z0) ̸= y, but rather ℘′(z0) = −y. In this case, setting z = −z0, we get [℘(z) : ℘′(z) : 1] = [x : y : 1],
meaning [x : y : 1] lies in the image of [℘ : ℘′ : 1]. Thus, [℘ : ℘′ : 1] is bijective, showing (3).

We have seen now that the Weierstrass ℘–function and its derivative are particularly important instances of
elliptic functions, making clear that every complex torus is biholomorphic to the solution set of a Weierstrass
e quation of the form y2 = x3 − g2(Λ)x − g3(Λ). One may wonder if (up to an affine change of variables)
every Weierstrass equation is equivalent to one arising from a lattice. In fact, this is the case. It is a general
fact that two Weierstrass equations are related by an affine change of coordinates (over an algebraically closed
field) if and only if a quantity called the j–invariant is the same for both equations. The j–invariant of y2 =

x3 − g2(Λ)x− g3(Λ) is 1728
g2(Λ)3

g2(Λ)3−27g3(Λ2) , which we will see is related to a nonconstant meromorphic function

j(z). Any nonconstant meromorphic function is surjective, and hence, we will see that for any Weierstrass
equation, one can cook up a corresponding lattice.

One may wonder if there are any other significant elliptic functions. This is essentially not the case.

Proposition 1.1.12. Every elliptic function is a rational function in ℘ and ℘′.

One may prove this using the Riemann–Roch theorem, using crucially the fact that ℘ and ℘′ have unique
poles at [0] of orders 2 and 3 respectively. This may also be done manually using a denominator clearing
argument. As this fact is not essential for our exposition, we shall direct the curious reader to [2, Section A.3].

Another important corollary of the differential equation for ℘ and its Laurent series expansion is the following:

Lemma 1.1.13. G2n(Λ) is a polynomial (with rational coefficient) in G4(Λ) and G6(Λ) independent of Λ.

Proof. This proof also comes from [1, Lemma 10.12]. Intuitively speaking, we get such a relationship in the
following way: up to scaling, the numbers G2n(Λ) are the coefficients in the Laurent series expansion of ℘(z; Λ).
Moreover, ℘ satisfies a nice differential equation. Such differential equations encode recursions in for the Laurent
series coefficients, so the values of G2n(Λ) for all n should be fully determined by the values for a few small n.
Let us now make this precise:

Let an := (2n + 1)G2n+2(L). As ℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z) − g3(Λ), we may differentiate with respect
to z once more to get ℘′′(z) = 6℘(z)2 − (1/2)g2(Λ). Substituting in the Laurent series expansion for ℘, and
comparing the coefficients for each power of z, we get

2n(2n− 1)an = 6

(
2an +

n−2∑
i=1

aian−1−i

)
.

After rearranging a bit, we get

(2n+ 3)(n− 2)an = 3

n−2∑
i=1

aian−1−i

and hence an induction argument shows each an is a polynomial in a1 and a2, thus proving the desired
result.

1.2 Complex multiplication

We have now have a basic appreciation for connection between elliptic curves, complex tori, and lattices. How-
ever, the elliptic curves of primary interest to us have a special additional property called complex multiplication.
In this section, we will define complex multiplication, and see how it is a fairly restrictive property.

Note that End(Λ) depends only on the homothety class of Λ, so normalizing Λ to be Z⊕ ω1Z, we see that
for any α ∈ End(Λ), α · 1 ∈ Λ, so End(Λ) ⊆ Λ (for normalized Λ). In particular, as a group, End(Λ) is free
abelian of rank at most 2 (and at least 1, as you may always scale by an integer). Unless otherwise stated, every
lattice will take this normalization.
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Definition 1.2.1. We say that a lattice Λ has complex multiplication (CM) by a ring O if O ⊆ End(Λ) where
O is larger than Z. We will say that Λ has full complex multiplication by O if O = End(Λ).

We ma similarly define CM for elliptic curves, either by appealing to the equivalence of categories, or directly:

Definition 1.2.2. We say that an elliptic curve E has complex multiplication (CM) by a ring O if O ⊆ End(E)
where O is larger than Z. We will say that E has full complex multiplication by O if O = End(E).

If Λ has CM, we its endomorphism ring belongs to a fairly restrictive class of rings: it is imaginary quadratic
order.

Proposition 1.2.3. If Λ has CM, then End(Λ) is a finite index subring of OQ[
√
−d] for some d ∈ N.

Proof. Since O := End(Λ) ̸= Z, we know that End(Λ) is a rank 2 Z–module, so in particular it is a sublattice
of Λ. In particular, O = [1, α]. As α2 ∈ O, we may represent α2 as a Z–linear combination of 1 and α. That is,
α2 −nα−m = 0 for some integers n,m, meaning α is a quadratic integer. Furthermore, O∩R ⊆ Λ∩R = Z, so
α must be imaginary. Thus, O is a subring and a sublattice of a ring of integers for some imaginary quadratic
field. Every sublattice is of finite index in its ambient lattice, so [OQ[

√
−d] : O] < ∞, and we are done.

Our main goal in this section will be to establish the following correspondence:

Theorem 1.2.4. There is an correspondence between

1. Ideal classes in O;

2. Lattices with full complex multiplication O (up to homothety);

3. Elliptic curves over C with full complex multiplication O (up to isomorphism).

By the equivalence of categories, we already have a correspondence between (2) and (3). If O is integrally
closed, it is fairly quick to show that there is a bijection between (1) and (2) as well:

Proof of Theorem 1.2.4 when O is integrally closed. Let LO denote the set of homothety classes of lattices with
full CM by O. We wish to define a map f : LO → Cl(O) (where Cl(O) denotes the class group of O) which is
bijective.

Fix a class [Λ] ∈ LO, and let Λ = [1, α]. We have shown earlier that O ⊆ Λ, and observed that sublattices
are always of finite index. Thus, let n = [Λ : O]. Then nΛ ⊆ O, and nΛ is naturally an O–submodule of O –
that is, an ideal of O. We will then let f([Λ]) be the ideal class of nΛ.

First we show that f is well defined. Suppose [Λ] = [Λ′] with Λ,Λ′ both normalized. Let Λ = [1, α],
Λ′ = [1, α′]. Since Λ,Λ′ are homothetic, there is β so that β · 1 ∈ Λ and β · α′ ∈ Λ. In particular, β ∈ Λ, and
hence β ∈ Frac(O). Thus, the ideals corresponding to Λ and Λ′ differ by a scaling factor in Frac(O), so their
ideal classes are the same.

If we consider a fixed embedding of Frac(O) into C, we may see fractional ideals as lattices in C. From this,
it is clear that f is injective. For any ideal I in the ideal class f([Λ]), we have constructed I to be homothetic
to Λ, so f([Λ]) = f([Λ′]) =⇒ [Λ] = [Λ′].

To show that f is surjective, fix an ideal class [I] ∈ Cl(O), and an ideal I representing that class. Since I is
finite index in O, it is a sublattice. Then O ⊆ End(I), as ideals are closed under multiplication in the ambient
ring. Furthermore, End(I) is a quadratic order as previously shown. But since O is integrally closed, it is a
maximal order (that is, it is not the proper ring of any quadratic order), meaning that End(I) = O. That is,
O has full complex multiplication by O. Since f([I]) is the ideal class corresponding to I, it follows that f is
surjective.

A general proof, however, requires us to make sense of Cl(O) when O is not integrally closed. A fuller
treatment of quadratic orders may be found in [1, Chapter 7], from which the following proofs and definitions
are taken.

Definition 1.2.5. A fractional O–ideal is a nonzero O–submodule I of Frac(O) such that there is λ ∈ O× so
λI ⊆ O.

Just as with traditional fractional ideals, one may multiply fractional ideals in the obvious way:

IJ = {
∑

injn : in ∈ I, jn ∈ J}

Furthremore, we may regard fractional O–ideals as lattices in C after fixing an embedding of Frac(O) in C.

Definition 1.2.6. A fractional O–ideal I is called proper if End(I) = O where End(I) are the endomorphisms
of I as a lattice.
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Definition 1.2.7. A fractional O–ideal I is called invertible if there is a fractional ideal J so that IJ = O.

Lemma 1.2.8. A fractional O–ideal I is proper if and only if it is invertible.

Proof. Suppose I is invertible. We wish to show it is proper. All O–ideals have CM by O, so we just need to
show that it has no more endomorphisms. Let α ∈ End(I) and J be a fractional ideal so that IJ = O. Then
α ∈ α(O) = α(IJ) = (αI)J ⊆ IJ = O, so α ∈ O, and we are done.

The reverse implication is a bit more involved, and we first require a small lemma.

Lemma 1.2.9. Let τ be a quadratic algebraic number with minimal polynomial ax2+bx+c, with gcd(a, b, c) = 1.
Note that aτ is a quadratic integer. Then the lattice I := [1, τ ] is a proper fractional ideal of O := [1, aτ ].

Proof. It is clear that O ⊆ End(I). Suppose β ∈ End(I). That means β ∈ I and τβ ∈ I, i.e. β = m+ nτ and
βτ = mτ + nτ2 = mτ + n

a (−bτ − c). As −bn
a , −cn

a ∈ Z, it follows that a|bn and a|cn. But gcd(a, b, c) = 1, so
this can only happen if a|n. In particular, m+ nτ ∈ [1, aτ ] = O, so End(I) = O.

With this lemma in place, we may now prove the forwards implication. Suppose I is proper. Normalize I
to be of the form I = [1, τ ], and let ax2 + bx + c be the minimal polynomial of τ with gcd(a, b, c) = 1. As I
is proper, O = [1, aτ ] by the above lemma. Let β → β′ denote the nontrivial automorphism of Frac(O). Then
τ ′ is the other root of ax2 + bx+ c, and the above lemma shows that J := [1, τ ′] is also a proper O–fractional
ideal. We now compute aIJ :

aIJ = [a, aτ, aτ ′, aτ · τ ′] = [a, aτ, aτ ′, aττ ′]

Since ττ ′ = c/a and τ + τ ′ = b/a, this is just

[a, aτ, b, c] = [1, aτ ] = O

where this second equality follows from the fact that gcd(a, b, c) = 1. Thus, I is invertible with inverse aJ ,
concluding the proof.

Definition 1.2.10. The ideal class group Cl(O) of an imaginary quadratic order O is the group of invertible
fractional ideals modulo the subgroup of principal fractional ideals {αO : α ∈ Frac(O)}.

The general proof of Theorem 1.2.4 then follows completely analogously to the integrally closed case. To
show that f is well–defined, we require the forwards implication of Lemma 1.2.8. To show the surjectivity of
f , we also needed that the fractional ideals representing classes in Cl(O) have full CM by O, which is the
reverse implication of Lemma 1.2.8. Aside from these appeals to the above lemma, everything follows mutatis
mutandis, and so we omit a second proof.
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Chapter 2

Modular j-function and the modular
equation

In the last section, we introduced the modular parameterization of elliptic curves, which realizes an isomorphism
C/Λ ∼= E(C) via the Weierstrass ℘ function and its derivative. This gives rise to the Weierstrass equation of an
elliptic curve E associated to a lattice Λ:

y2 = 4x3 − g2(Λ)x− g3(Λ). (2.1)

We can then define the modular discriminant as

∆(Λ) = g2(Λ)
3 − 27g3(Λ)

2.

One can check that the RHS of 2.1 has 3 distinct roots (following from Corollary 1.1.11 and Theorem 1.1.9),
and hence ∆ ̸= 0. With this, we can define the j-invariant of Λ (equivalently, of E) as

j(Λ) = 1728 · g2(Λ)
3

∆(Λ)
.

Theorem 2.0.1. The j-invariant classifies lattices up to homothety (equivalently, elliptic curves up to isomor-
phism).

Proof. First, we see that Gn(Λ) is a homogeneous function of degree −2n for each n. Comparing degrees, we
find that j is homogeneous of degree 0, so it takes the same values on proportional lattices. For the converse,
suppose j(Λ) = j(Λ′). We will show the case for g2(Λ

′), g3(Λ
′) ̸= 0 here, but the others are similar.

Our first goal is to find γ so that gn(Λ) = gn(γΛ
′) for n = 2, 3.

Pick γ such that

γ4 =
g2(Λ)

g2(Λ′)
.

Using that j(Λ) = j(Λ′), we find

γ12 =

(
g3(Λ)

g3(Λ′)

)2

,

so

γ6 = ± g3(Λ)

g3(Λ′)
.

Up to replacing γ with iγ, we may assume the sign is positive, and we are done with this initial step, since
gn(Λ) = γ2ngn(Λ

′) = gn(γΛ
′).

We may now apply Lemma 1.1.13 to conclude that Gn(Λ) = Gn(γΛ
′) for all n. But by the Laurent series

expansion for ℘(z; Λ), this means ℘(z; Λ) = ℘(z; γΛ′). Since the poles of ℘(z; Λ) are precisely located at Λ, we
conclude that Λ = γΛ′, so we are done.

Remark. First, note that given τ ∈ H, we have a lattice Λτ := [1, τ ] so we may define a map j : H → C via

j(τ) := j(Λτ ).

Further, any lattice Λ is homothetic to Λτ for some τ ∈ H; one first fixes a “positive basis” [ω1, ω2] such that
Im(ω2/ω1) > 0 so then if Λ = [ω1, ω2], then ω−1

1 Λ = Λτ for τ ∈ H.
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Moreover, we claim that [1, τ ] ∼= [1, τ ′] iff τ ′ = γτ for γ ∈ SL2(Z). First, suppose Λτ and Λτ ′ are homothetic.
Then there is a α ∈ C× such that Λτ = γΛτ ′ . Thus {α, ατ} and {1, τ ′} are bases for the same lattice. Then

1 = aα+ bατ = α(a+ bτ) and τ ′ = cα+ dατ = α(c+ dτ),

τ ′ =
α(a+ bτ)

α(c+ dτ)
= γτ, γ =

[
a b
c d

]
.

Note that γ is invertible since it is a change-of-basis matrix, and one can show det(γ) > 0 as τ, τ ′ ∈ H, so
γ ∈ SL2(Z) as desired. For the converse, one can find α via the ratios 1/a+ bτ and τ ′/c+ dτ .

We will not show that j is holomorphic, but the above shows that j is modular of weight 0.

We will additionally use that the Fourier expansion of j(τ) is

j(τ) = q−1 + 744 +O(q),

where q = e2πiτ . Further, we will use that this Fourier expansion has integer coefficients.

Remark. As seen in Spencer’s section, g2 and g3 are the normalized Eisenstein series of weight 4 and 6
respectively. Further, ∆ is in the same way a modular form of weight 12.

Proposition 2.0.2. Every holomorphic modular function is a polynomial in j.

Proof. Suppose f(τ) is a w.h.m.f., in particular f is meromorphic at infinity. Then the prinicipal part of its
Fourier expansion is a polynomial in q−1. Let this polynomial be P (ω). Then f(τ) = P (j(τ)) is holomorphic
at ∞. Analogous to the fact that everywhere holomorphic elliptic functions are constant, a modular function
which is holomorphic at infinity must be constant, thus we are done.

Definition 2.0.3. For m ≥ 1, define Γ0(m) ⊂ SL2(Z) to be subgroup of matrices which become upper triangular
mod m.

Fact: finite index. In the case where p prime, [SL2(Z) : Γ0(p)] = p+ 1.

Definition 2.0.4. A weakly holomorphic modular function on level m is a function f : H → C such that:

• f is holomorphic on H

• f(γτ) = f(τ) for all γ ∈ Γ0(m)

• f is meromorphic at the cusps of Γ0(m) (cusps are the points added to compactify the modular curve
Y0(m) := SL2(Z)\H)

Example 2.0.5. j(mτ) is a weakly holomorphic modular function on level m.

One can see invariance by considering γ =

[
a b
c d

]
∈ Γ0(m). Then γ′ =

[
a mb

c/m d

]
∈ SL2(Z), and it is

easy to show
j(m(γτ)) = j(γ′mτ) = j(mτ),

where the last equality follows from the SL2(Z)-invariance of j. Then holomorphicity and growth conditions
follow from the analogous properties of j.

Definition 2.0.6. For m ≥ 1, define

φm(X, τ) :=

[Γ0(m):SL2(Z)]∏
i=1

(X − j(γimτ)),

where the γi are a complete set of coset representatives for Γ0(m).

Claim: this construction is independent of the choice of coset representatives. That is, each function j(γimτ)
is Γ0(m)-invariant. The argument is equivalent to that which shows j(mτ) is a w.h.m.f. of level m.

Example 2.0.7. τ = i, m = 2:

φ2(X, i) = (X − j(2i))(X − j(i/2))(X − j((i+ 1)/2))

Proposition 2.0.8. φm is a polynomial in X and j(τ).
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Proof. First, note that the coefficient of Xk in φm is a symmetric polynomial in the j(γomτ). If γ ∈ SL2(Z),
note that τ 7→ γτ permutes the cosets represented by j(γimτ). Thus the coefficient of Xk is SL2(Z)-invariant.
Then one analyzes the q-expansions of j(γimτ) to determine that these coefficients are holomorphic on H and
are meromorphic at ∞. Thus, they are polynomials in j(τ) by Proposition 3.0.2.

Remark. We then define Φm(X, j) := φm(X, τ). We call Φm the mth modular equation.

Proposition 2.0.9. If Λ is some lattice and λ is a cyclic sublattice of index m (i.e. Λ/λ ∼= Z/mZ), then
Φm(j(λ), j(Λ)) = 0.

Proof. Since lattices are just rank 2 free Z-modules, there exists a positive basis {ω1, ω2} of Λ and such that
{ω1,mω2} is a basis for λ. Then if τ = ω2, ω1, j(Λ) = j(τ) and j(λ) = j(mτ). Then the claim is proven
observing that 1 is a coset representative for Γ0(m).

Example 2.0.10. Λ = [1, i],m = 2:

Theorem 2.0.11. Let m be a positive integer.

1. Φm(X, j) ∈ Z[X, j].

2. Φm(X, j) is irreducible as a polynomial in X.

3. Φm(X, j) = Φm(j,X) for m > 1.

4. If m is not a perfect square, then Φm has leading coefficient ±1.

5. (Kronecker’s Congruence) If p is prime,

Φp(X, j) ≡ (Xp − j)(X − jp) mod pZ[X, j].

Proof. We give a proof of (1) and (2) here:

1. We only give the proof for p prime. Note that j(τ) ∈ Q((q)), so j(pτ) ∈ Q((q)) as e2πipτ = qm ∈ Q((q)).
Now we need to see where j(pγkτ) lives. We have

e2πiγkτ = e2πi(
τ+k
p ) = e2πiτ/pe2πik/p = q1/pζkp ,

so j(pγkτ) ∈ Q(ζp)((q)). Now consider the action of Gal(Q(ζp)/Q) on the coefficient of Xk in Φp(X, j) by
acting on the fourier coefficients of the j(pγkτ). One can see this action permutes the j(pγkτ) and fixes
j(pτ) by the above calculation, so the coefficient of Xk as a symmetric polynomial in these arguments
must be fixed. Thus, it lies in Q. Further, recall that the coefficients of j(τ) are in Z, so the coefficients
of the j(pγkτ) are algebraic integers. Thus, the coefficient of Xk must actually be in Z((q)) as desired.

2. Note that the index [SL2(Z) : Γ0(m)] gives an upper bound on the degree of the extension C(j(τ), j(mτ))
over C(j(τ)). Equality will imply that µj(mτ),C(j(τ)(X) = Φm(X, j(τ) and hence Φm irreducible. Now for
γ ∈ SL2(Z), define

φγ : C(j(τ), j(mτ)) → C((τ))

via φγ(f)(τ) = f(γτ). This is an embedding of the field of modular functions on Γ0(m) into the field
of formal Laurent series. Note that this map fixes C(j(τ)), since j(τ) is SL2(Z)-invariant. The number
of distinct embeddings equals the degree of C(j(τ), j(mτ)) over C(j(τ)), and we know that j(γimτ) =
j(γjmτ) if and only if i = j. Thus, we are done.

For the main theorem of this section, we need to describe the equivalent notion of a cyclic sublattice in terms
of fractional ideals.

Definition 2.0.12. Given an order O, we say a proper O-ideal is primitive if it is not of the form da where
d > 1 is an integer and a is a proper O-ideal. We say α ∈ O is primitive if the principal ideal it generates is.

Claim: Given b a proper fractional O-ideal and a a proper O−ideal, then ab is a cyclic sublattice of b of index
N(a) if and only if a is primitive.

Theorem 2.0.13. Let OK be the maximal order in an imaginary quadratic field K, a a proper fractional
OK–ideal. Then j(a) is an algebraic integer.
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Proof. Let α ∈ OK be primitive such that αa is a cyclic sublattice of index m := N(α). Since a has CM by O,
we have j(αa) = j((a)) and

Φm(j(a), j(a)) = Φm(j(αa), j(a)) = 0,

proving j(a) is algebraic. By Proposition 3.0.6, so long as we can choose α such that N(α) is not a perfect
square, j(a) is an algebraic integer by the same argument. One can show the existence more generally using
the tools of the next section, but for our use it suffices to pick α = 1 + i for Q(i) and α =

√
−d for Q(

√
−d)

with d > 1 squarefree. One finds the norms to be 2 and d respectively.
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Chapter 3

The first fundamental theorem of
complex multiplication

3.1 Some basic facts about Algebraic Number Theory

Notation.
For a number fields K ⊂ L, let us take
OK :=Ring of integers of K.
PK :=Set of all non-zero prime ideals of OK .
PK :=Set of all non-zero principal ideals of OK .
Spl(L|K) := {primes in K splitting completely in L}
PK,Q := {p ∈ PK : f(p|p) = 1}
SplQ(L|K) = Spl(L|K) ∩ PK,Q
For sets S, T , we write S⊂̇T to denote the fact that S\T is a finite set. We write S

.
= T if S⊂̇T and T ⊂̇S.

Facts. (from last time)

• Let Λ,Λ′ be two lattices such that Λ/Λ′ ∼= Z/pZ, then

Φp(j(Λ), j(Λ
′)) = 0.

• Kronecker’s congruence:
Φp(X, j) ≡ (Xp − j)(X − jp) (mod pZ[X, j]).

Let L/K be a Galois extension and P be a prime in L lying above p. Let l and k be the respective residue
fields. Let G(P) be the decomposition group. We have a surjective map

G(P) ↠ Gal(l/k).

It’s kernel is called inertia group, I(P). If p is unramified in L, then inertia group is trivial and we have a unique
element in G(P) that goes to Frobenius automorphism of Gal(l/k), we call it Frobenius element and denote it
by Fr(P/p) (and by Fr(p) if extension is abelian).

Proposition 3.1.1. Let L/K be a finite Galois extension with Galois group G.

• if p ∈ PK is unramified in L then the Frobenius automorphisms Fr(P|p) for all primes P ∈ PL lying above
p form a conjugacy class in G.

• p ∈ PK splits completely in L if and only if it is unramified and Fr(P|p) is trivial for some (equivalently,
any) prime P ∈ PL lying above p.

Furthermore, if K ⊂ L ⊂ M be a tower of finite extensions such that both L/K and M/K are Galois extensions
with p ⊂ PL ⊂ PM , then FrM/K(PM|p)|L = FrL/K(PL|p).

If [K : Q] = m then for each prime p, there is atmost m primes p ⊂ PK lying above p, and for each of them
the norm N(p) = |OK/p| is a power of p. It follows that∑

p|p

N(p)−s ≤ mp−s.

So using generalized harmonic series, it can be shown that
∑

p∈PK
N(p)−s converges for Re(s) > 1, and hence

convergence of a similar series for any subset S ⊂ PK .
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Definition 1 (Dirichlet density). Given a subset S ⊂ PK , its Dirichlet density is defined by

δ(S) := lim
s→1+

∑
p∈S N(p)−s∑
p∈PK

N(p)−s
,

provided that the limit exists.

Remarks.
1)Since we know that ∑

p∈PK

N(p)−s → ∞ as s → 1+,

for any finite set S, δ(S) = 0. In particular, δ(S) > 0 implies that #(S) is infinite.
2) If we take S := {p : f(p|p) > 1}, then we have that∑

p∈S

N(p)−s < m ·
∑

p prime

p−2 < ∞,

and hence S has density 0. So we have that δ(T ) = δ(T ∩ PK,Q) for any subset T ⊂ PK .

Theorem 3.1.2 (Chebotarev’s density theorem). Let L/K be a Galois extension with Galois group G, and let
C be a conjugacy class in G. Then the set PK(C) of those primes p ∈ P which are unramified in L and for which
Fr(P|p) ∈ C for some (equivalently, any) P|p, has Dirichlet density equal to |C|/|G| (in particular, PK(C) is
infinite).

Example 3.1.3 (Cyclotomic extension). Let L = Q(ζn), be the nth cyclotomic field extension of K = Q. Then
Gal(L/K) = (Z/nZ)× is abelian, so every conjugacy class C consists of single element. Take Ca = {σa}, where
(a, n) = 1 and σa(ζn) = ζan. For any prime p ∤ n, reduction of the polynomial Xn − 1 mod p has no multiple
roots, which implies that extension L/K is unramified at p. Furthermore,

σp(ζn) = ζpn ≡ Frp(ζn) (mod P),

where P|p, so Frp = σp. We see that in this case

PK(Ca) = {p | p ∤ n and p ≡ a (mod n)}.

Thus, Chebotarev’s density theorem tells us that there are infinitely many primes ≡ a (mod n) which is Dirich-
let’s prime number theorem.

Example 3.1.4. Let L = Q(
√
−d) be an imaginary quadratic extension over K = Q. Then we have that

Gal(L/K) = Z/2Z. Then

a prime splits ⇐⇒
(
−d
p

)
= 1 ⇐⇒ Fr(p) = id

For our purposes, we need another consequence of Chebotarev’s Density Theorem which characterizes in-
clusions between finite extensions of K in terms of the corresponding sets of completely split primes, at least
when one of the extensions is Galois.

Theorem 3.1.5. Let L and M be finite extensions of K. If M/K is a Galois extension then

L ⊂ M ⇐⇒ SplQ(M|K)⊂̇SplQ(L|K).

Proof. ( =⇒ ) is clear by the multiplicativity of the ramification index and the residual degree.
( ⇐= ) Pick a finite subset S ⊂ PK,Q such that

SplQ(M|K) ⊂ SplQ(L|K) ∪ S. (3.1)

Let F be a finite Galois extension over K that contains L and M . Assume that L ̸⊂ M. Then there exists
a σ ∈ G := Gal(F/K) that acts trivially on M and not on L, and we can pick a ∈ OL such that σ(a) ̸= a.
Since only finitely many primes divide (σ(a)−a)OF , it follows by Chebotarev’s density theorem (and the fact if∑

⊂ PK has positive density then so is true for
∑

∩PK,Q) that there exists an ideal p ⊂ PK,Q \S and P ⊂ PF

lying above it and unramified in F such that Fr(P|p) = σ (in particular, σ ∈ G(P)), and σ(a) ̸≡ a (mod P).
Since M/K is Galois extension, for the prime ideal P′ ∈ PM lying below P, we have that

Fr(P′|p) = Fr(P|p)|M = σ|M = idM,
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which implies that p splits completely in M , and therefore belongs to SplQ(M|K). On the other hand, let
P′′ ∈ PL be a prime lying below P. Since the image of a ∈ OL in OL/P

′′ ⊂ OF /P is not fixed by the action
of σ on OF /P (recall that σ ∈ G(P)), we see that

OL/P
′′ ̸= OK/p.

Hence, we have that f(P′′|p) > 1, and therefore p does not split completely in in L. This contradicts the
inclusion (3.1) and proves the theorem.

Fact. For any number field K, there exists a Maximal abelian unramified extension, K̃, called
Hilbert class field. For example, if we take K = Q then K̃ = Q, since every extension over Q is ramified.

Theorem 3.1.6. Assume the notations as above. Then we have that Cl(K) ∼= Gal(K̃/K), given by Frobenius
element.

Fact. Primes p in K that split completely in K̃ are exactly the principal ideals.

Theorem 3.1.7. A prime p ⊂ K splits completely in K̃ if and only if p is principle. In particular, L = K̃ if
SplQ(L|K)

.
= PK ∩ PK,Q.

3.2 First fundamental theorem of complex multiplication

Let us take K = Q(
√
−d) (d positive square-free). Consider K as a subfield of C then OK can be thought of as

a lattice in C.

Theorem 3.2.1. Let a be a non-zero ideal in the ring of integers OK . Then j(a) is an algebraic integer and
the field K(j(a)) coincides with the Hilbert class field K̃.

Proof. First part already proved.
We now prove that K(j(a)) = K̃. We will use the following lemma.

Lemma 3.2.2. Let p be a rational prime that splits completely in K, and let p be one of the primes lying above
p. Fix a non-zero ideal a of OK , and let F be a finite extension of K that contains j(a) and j(ap). Then for
any prime ideal P ⊂ OF lying above p, one of the following two congruences is true:

j(a)p ≡ j(ap) (mod P) or j(a) ≡ j(ap)p (mod P).

Proof. Since p splits in K, we have that OK/p ∼= Z/pZ. We also have that There exists α ∈ OK such that
a = αOK + ap, and then multiplication by α induces an isomorphism

a/ap ∼= OK/p ∼= Z/pZ.

So we get that
Φp(j(a), j(ap)) = 0.

Using Kronecker’s congruence, we obtain

(j(ap)p − j(a))(j(ap)− j(a)p) ≡ 0 (mod P).

Remark. This ambiguity in congruence relation can be resolved. We always have j(a) ∼= j(pa) (mod P) or
equivalently, j(a)p ∼= j(p−1a) (mod P). This also explains how Fr(P|p) acts on these elements. If we consider
the representatives of class group of K, c1, c2, · · · , ch, then Fr(P|p) permutes them, and adjoining one of them
to K adjoins all of them.

Fix a non-zero ideal a of OK and set L = K(j(a)). By Theorem 3.1.7, L = K̃ if and only if SplQ(L|K)
.
=

PK ∩ PK,Q. Since OK [j(a)] contains a basis of L/Q, the index, N := [OL : OK [j(a)]], is finite. Set

S := {p ∈ PK,Q | p divides N or p ramifies in L}.

We claim that
SplQ(K̃|K) \ S = PK ∩ PK,Q \ S ⊂ SplQ(L|K). (3.2)

Suppose that p ∈ PK ∩PK,Q \S, and let p be the corresponding prime in Q. Since p is unramified in L, to prove
that p ∈ SplQ(L|K), we need to show that for any prime P lying above p, we have that OL/P = OQ/p = Z/pZ
which is equivalent to showing that the Frobenius automorphism acts on OL/P trivially, in other words,

ap ≡ a (mod P) for all a ∈ OL. (3.3)
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By construction, p is principal, say p = (π). Then j(ap) = j(aπ) = j(a), so it follows from Lemma 3.2.2 that

j(a)p ≡ j(a) (mod P).

Furthermore, since p ∈ PK,Q, we have that f(p|p) = 1, and therefore ap ≡ a (mod P) for all a ∈ OK . So we
have that (3.3) is true for all a ∈ OK [j(a)]. Which in turn proves that (3.3) is true on OL since for any a ∈ OL,
N · a ∈ OK [j(a)], Np ≡ N (mod P), and p is coprime to N so we get

N · ap(N · a)p ≡ N · a (mod P).

Which proves our claim.
As the class number of K is finite, we can pick a finite set of representatives c1, c2, .., ch of all ideal classes.

Then every ideal c is proportional to one of the ci’s, and then j(c) = j(ci). On the other hand, since any of
the ci are not proportional to each other so j(c1), j(c2), .., j(ch) are all distinct. The first part of the argument
shows that j(c) → OK̃ for any nonzero ideal c of OK , so

∆ =
∏
i<j

(j(ci)− j(cj))

is a non-zero element of OK̃ . Consider a factorization into a product of prime ideal,

∆OK̃ = P̃1
α1
P̃2

α2
...P̃αr

r ,

and let pi ∈ PK be the prime lying below P̃i. Set T := {p1, p2, ..., pr}. We will prove that

SplQ(L|K) \ T ⊂ PK ∩ PK,Q. (3.4)

Suppose that p ∈ SplQ(L|K) \ T. Let p be the corresponding rational prime, and let P̃ be a prime ideal of OK̃

lying above p. Then by Lemma 3.2.2, one of the following congruence holds:

j(a)p ≡ j(ap) (mod P) or j(a) ≡ j(ap)p (mod P).

But since p ∈ SplQ(L|K), for P = OL ∩ P̃, we have OL/P = Z/pZ, in particular,

j(a)p ≡ j(a) (mod P̃).

Above two give us
j(ap) ≡ j(a) (mod P̃).

If j(ap) ̸= j(a), then j(ap) − j(a) would divide ∆, which would imply that P̃ would coincide with one of the
P̃i. This is not the case by our construction. Thus, we get that

j(ap) = j(a),

which means that the ideals a and ap are proportional, and therefore p ∈ PK . Together (3.2) and (3.4) prove
that SplQ(L|K)

.
= PK ∩ PK,Q. Theorem directly follows from Theorem 3.1.7.

Example 3.2.3. In his paper Traces of Singular Moduli, Don Zagier gave a way to explicitly calculate
Hilbert class polynomials which generates Hilbert class field. Using it, we find the following.

• d = 3, we know that h3 = 1 so K̃ = Q(
√
−3) and it can seen easily by the well known fact that j( 1+

√
−3

2 ) =
0.

• d = 15, in this case the class number h15 = 2 and the Hilbert class field of Q(
√
−15) is the splitting field

of H15(X) = X2 + 191025X − 121287375 over Q(
√
−15) which has roots{{

X → 135

2

(
−637

√
5− 1415

)}
,

{
X → 135

2

(
637

√
5− 1415

)}}
Hence ˜Q(

√
−15) = Q(

√
−3,

√
5).

• d = 23, In this case the class number h23 = 3 and ˜Q(
√
−23) = Q(

√
−23)(α) where alpha is a root of

H23(X) = x3 + 3491750x2 − 5151296875x+ 12771880859375
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